按揭贷款利息怎么算的?

251 2023-12-12 02:31

在别处复制过来的,看着好复杂,楼主慢慢看吧。感觉所有的贷款计算方法都差不多,就是利率不同而已。

本金还款和利息还款:

月还款额=当月本金还款+当月利息 式1

其中本金还款是真正偿还贷款的。每月还款之后,贷款的剩余本金就相应减少:

当月剩余本金=上月剩余本金-当月本金还款

直到最后一个月,全部本金偿还完毕。

利息还款是用来偿还剩余本金在本月所产生的利息的。每月还款中必须将本月本金所产生的利息付清:

当月利息=上月剩余本金×月利率 式2

其中月利率=年利率÷12。据传工商银行等某些银行在进行本金等额还款的计算方法中,月利率用了一个挺孙子的算法,这里暂且不提。

由 上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩余本金较多,所以可见,贷款初期每月的利息较多,月还款额中偿还利息的份额 较重。随着还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金全部还清,利息付最后一次,下个月将既无本金又无利息,至 此,全部贷款偿还完毕。

两种贷款的偿还原理就如上所述。上述两个公式是月还款的基本公式,其他公式都可由此导出。下面我们就基于这两个公式推导一下两种还款方式的具体计算公式。

1. 等额本金还款方式

等额本金还款方式比较简单。顾名思义,这种方式下,每次还款的本金还款数是一样的。因此:

当月本金还款=总贷款数÷还款次数

当月利息=上月剩余本金×月利率

=总贷款数×(1-(还款月数-1)÷还款次数)×月利率

当月月还款额=当月本金还款+当月利息

=总贷款数×(1÷还款次数+(1-(还款月数-1)÷还款次数)×月利率)

总利息=所有利息之和

=总贷款数×月利率×(还款次数-(1+2+3+。。。+还款次数-1)÷还款次数)

其中1+2+3+…+还款次数-1是一个等差数列,其和为(1+还款次数-1)×(还款次数-1)/2=还款次数×(还款次数-1)/2

所以,经整理后可以得出:

总利息=总贷款数×月利率×(还款次数+1)÷2

由于等额本金还款每个月的本金还款额是固定的,而每月的利息是递减的,因此,等额本金还款每个月的还款额是不一样的。开始还得多,而后逐月递减。

2. 等额本息还款方式

等额本息还款方式的公式推导比较复杂,不过也不必担心,只要具备高中数列知识就可以推导出来了。

等额本金还款,顾名思义就是每个月的还款额是固定的。由于还款利息是逐月减少的,因此反过来说,每月还款中的本金还款额是逐月增加的。

首先,我们先进行一番设定:

设:总贷款额=A

还款次数=B

还款月利率=C

月还款额=X

当月本金还款=Yn(n=还款月数)

先说第一个月,当月本金为全部贷款额=A,因此:

第一个月的利息=A×C

第一个月的本金还款额

Y1=X-第一个月的利息

=X-A×C

第一个月剩余本金=总贷款额-第一个月本金还款额

=A-(X-A×C)

=A×(1+C)-X

再说第二个月,当月利息还款额=上月剩余本金×月利率

第二个月的利息=(A×(1+C)-X)×C

第二个月的本金还款额

Y2=X-第二个月的利息

=X-(A×(1+C)-X)×C

第二个月剩余本金=第一个月剩余本金-第二个月本金还款额

=A×(1+C)-X-(X-(A×(1+C)-X)×C)

=A×(1+C)-X-X+(A×(1+C)-X)×C

=A×(1+C)×(1+C)-[X+(1+C)×X]

=A×(1+C)^2-[X+(1+C)×X]

(1+C)^2表示(1+C)的2次方

第三个月,

第三个月的利息=第二个月剩余本金×月利率

第三个月的利息=(A×(1+C)^2-[X+(1+C)×X])×C

第三个月的本金还款额

Y3=X-第三个月的利息

=X-(A×(1+C)^2-[X+(1+C)×X])×C

第三个月剩余本金=第二个月剩余本金-第三个月的本金还款额

=A×(1+C)^2-[X+(1+C)×X]

-(X-(A×(1+C)^2-[X+(1+C)×X])×C)

=A×(1+C)^2-[X+(1+C)×X]

-(X-(A×(1+C)^2×C+[X+(1+C)×X])×C)

=A×(1+C)^2×(1+C)

-(X+[X+(1+C)×X]×(1+C))

=A×(1+C)^3 -[X+(1+C)×X+(1+C)^2×X]

上式可以分成两个部分

第一部分:A×(1+C)^3。

第二部分:[X+(1+C)×X+(1+C)^2×X]

=X×[1+(1+C)+(1+C)^2]

通过对前三个月的剩余本金公式进行总结,我们可以看到其中的规律:

剩余本金中的第一部分=总贷款额×(1+月利率)的n次方,(其中n=还款月数)

剩余本金中的第二部分是一个等比数列,以(1+月利率)为比例系数,月还款额为常数系数,项数为还款月数n。

推广到任意月份:

第n月的剩余本金=A×(1+C)^n -X×Sn(Sn为(1+C)的等比数列的前n项和)

根据等比数列的前n项和公式:

1+Z+Z2+Z3+...+Zn-1=(1-Z^n)/(1-Z)

可以得出

X×Sn=X×(1-(1+C)^n)/(1-(1+C))

=X×((1+C)^n-1)/C

所以,第n月的剩余本金=A×(1+C)^n-X×((1+C)^n-1)/C

由于最后一个月本金将全部还完,所以当n等于还款次数时,剩余本金为零。

设n=B(还款次数)

剩余本金=A×(1+C)^B-X×((1+C)^B-1)/C=0

从而得出

月还款额

X=A×C×(1+C)^B÷((1+C)^B-1)

=  总贷款额×月利率×(1+月利率)^还款次数÷[(?000保 吕 剩 还款次数-1]

将X值带回到第n月的剩余本金公式中

第n月的剩余本金=A×(1+C)^n-[A×C×(1+C)^B/((1+C)^B-1)]×((1+C)^n-1)/C

=A×[(1+C)^n-(1+C)^B×((1+C)^n-1)/((1+C)^B-1)]

=A×[(1+C)^B-(1+C)^n]/((1+C)^B-1)

第n月的利息=第n-1月的剩余本金×月利率

=A×C×[(1+C)^B-(1+C)^(n-1)]/((1+C)^B-1)

第n月的本金还款额=X-第n月的利息

=A×C×(1+C)^B/((1+C)^B-1)-A×C×[(1+C)^B-(1+C)^(n-1)]/((1+C)^B-1)

=A×C×(1+C)^(n-1)/((1+C)^B-1)

总还款额=X×B

=A×B×C×(1+C)^B÷((1+C)^B-1)

总利息=总还款额-总贷款额=X×B-A

=A×[(B×C-1)×(1+C)^B+1]/((1+C)^B-1)

等额本息还款,每个月的还款额是固定的。由于还款初期利息较大,因此初期的本金还款额很小。相对于等额本金方式,还款的总利息要多。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片